Носители информации прошлого. Конспект урока по информатике на тему: "История развития носителей информации" От глины до металла - путь в несколько веков

С древнейших времен люди искали способы записи и хранения различной информации. Сначала они рисовали на скалах и глине. Затем появился пергамент, а позже - бумага. В XX веке с появлением первых компьютеров хранить информацию стало легче, но эволюция носителей информации лишь ускорилась. Казалось бы, еще вчера мы записывали нужные нам файлы на дискеты. А сегодня мы уже пользуемся 256-гигабайтными флешками! В общем, развитие технологий хранения информации не стоит на месте. Поэтому в этот раз мы вспоминаем, с чего же началась история компьютерных носителей информации, и расскажем о том, каких результатов добилась индустрия к концу XX века.

В таком виде сохраняли информацию в былые времена

Станок Жаккара. Перфокарты

История носителей информации берет свое начало в начале XIX века. Причем в роли прародителя запоминающих устройств выступает - кто бы мог подумать! - ткацкий станок. Автором первого изобретения в области хранения данных стал французский изобретатель Жозеф Мари Жаккар. Долгое время он работал со станками в качестве подмастерья, ткача и наладчика, поэтому богатый опыт значительно помог ему в дальнейшей изобретательской деятельности. Итак, в чем же заключалась инновационная идея Жаккара? Несмотря на то, что производство ткани в то время являлось довольно сложным процессом, по своей сути оно представляло собой постоянное повторение одних и тех же действий. Жаккар пришел к выводу, что этот процесс можно автоматизировать.

Жозеф Мари Жаккар - создатель ткацкого станка, использующего перфокарты

Французский изобретатель придумал такую систему, которая использовала в своей работе специальные твердые пластины с отверстиями. Они и являлись первыми в мире перфокартами. Прежде подобные пластины использовались в станках Вокансона и Бушона, однако эти устройства были слишком дороги в производстве и по этой причине так и не прижились. В своей же разработке Жаккар учел все недостатки этих аппаратов. В пластинах было увеличено количество рядов отверстий, что обеспечило обработку большего числа нитей, а, следовательно, и повышение производительности станка. Кроме этого, был значительно упрощен процесс подачи пластин в считывающее устройство - набор щупов, связанных со стержнями нитей. При проходе пластины щупы проваливались в отверстия, поднимая вверх соответствующие нити и образуя основные перекрытия в ткани. Таким образом, определенная комбинация отверстий на пластине позволяла создать ткань с нужным узором.

Ткацкий станок Жаккара

Первый автоматизированный станок Жаккар создал в 1801 году и на протяжении еще нескольких лет дорабатывал его. За свои достижения изобретатель получил пенсию в 3000 франков и одобрение Наполеона. Однако ни сам Жаккар, ни французский император не имели ни малейшего понятия, насколько важным станет это изобретение в будущем.

В 30-х годах XIX века на разработанные Жаккаром перфокарты обратил внимание английский математик Чарльз Бэббидж. В то время ученый ум трудился над созданием аналитической машины и решил использовать в ее конструкции перфокарты. Для этого англичанин даже совершил путешествие во Францию с целью подробно изучить станки Жаккара. Увы, но из-за низкого уровня технологий и недостатка финансовых средств аналитическая машина Бэббиджа так и не увидела свет. Тем не менее, ее конструкция стала впоследствии прообразом современных компьютеров.

Табулятор Холлерита

Кроме этого, перфокарты использовались в табуляторе, разработанном в 1890 году Германом Холлеритом. Табулятор являлся механизмом для обработки статистических данных и использовался на благо Бюро переписи населения США. Кстати, созданная Холлеритом компания Tabulating Machine Company в конечном итоге была переименована в International Business Machines (IBM). На протяжении нескольких десятков лет IBM развивала и продвигала технологию перфокарт. В середине XX века они использовались повсеместно, получив особенно широкое распространение в компьютерной технике и различных станках. Закат эпохи перфокарт пришелся на 1980-е годы, когда на смену им пришли более совершенные магнитные носители информации. Интересно, что отдел исследования перфокарт компании IBM существовал вплоть до 2000-х годов. Например, в 2002 году в IBM изучали создание перфокарты размером с почтовую марку, которая могла бы содержать до 25 миллионов страниц информации.

Небольшие перфокарты

Магнитные диски

Несмотря на то, что перфокарты отличались простотой изготовления, они обладали и целым рядом довольно существенных недостатков. Во-первых, это небольшая емкость. Стандартная перфокарта вмещала в себе около 80 символов, что соответствовало 100 байтам информации. Это очень мало. Судите сами: для хранения одного мегабайта данных потребовалось бы свыше десяти тысяч таких перфокарт. Во-вторых, это низкая скорость чтения и записи. Даже самые совершенные считывающие устройства могли обрабатывать не более одной тысячи перфокарт в минуту. То есть за секунду они считывали лишь 1,6 Кбайт данных. Ну и в-третьих, это невысокая надежность и невозможность повторной записи. Конечно, понятие «надежность» не совсем корректно использовать по отношению к перфокартам. Однако, согласитесь, повредить изготовленную из тонкого картона пластину не составляет никакого труда. Вдобавок к этому делать отверстия в картах нужно было очень аккуратно и внимательно: одна лишняя «дырка» - и перфокарта приходила в негодность, а хранящаяся на ней информация безвозвратно пропадала.

К хранению данных требовался новый подход. И в середине XX века были созданы первые магнитные носители информации. Эпоху данного типа накопителей открыла магнитная пленка, разработанная немецким инженером Фрицем Пфлюмером. Патент на это устройство был выдан еще в 1928 году, но немецкие власти так долго «скрывали» технологию внутри страны, что за пределами державы о ней стало известно лишь после окончания Второй мировой войны. Магнитная пленка изготавливалась из тонкого слоя бумаги, на который напылялся порошок оксида железа. При записи информации пленка попадала под воздействие магнитного поля, и на поверхности ленты сохранялась определенная намагниченность. Это свойство затем и использовали считывающие устройства.

Магнитная лента использовалась в компьютере UNIVAC-I

Впервые магнитная лента была применена в коммерческом компьютере UNIVAC-I, выпущенном в 1951 году. Кстати, его первый экземпляр попал в то же самое Бюро переписи населения США. Магнитная пленка, используемая в UNIVAC-I, была намного более емкой, нежели перфокарты. Ее объем равнялся емкости десяти тысяч перфокарт, то есть он составлял примерно 1 Мбайт.

Развитие технологии магнитных лент продолжалось до 1980-х годов. В течение этого времени подобные накопители использовались в основном в мейнфреймах и мини-компьютерах. Ну а с 80-х годов магнитная лента использовалась лишь для резервного хранения данных. Этому способствовало то, что ленточные картриджи оставались надежным и очень дешевым носителем информации. Но даже несмотря на эти преимущества, к концу 2000-х годов специалисты предрекали конец эпохи магнитных лент - цены на жесткие диски продолжали падать. Вдобавок они предлагали высокую плотность записи. Начиная с 2008 года, рынок ленточных накопителей уменьшался примерно на 14% в год, и даже ярые сторонники технологии признавали, что у нее нет шансов на выживание. Однако ситуация резко изменилась в 2011 году. В Таиланде произошло наводнение, продолжавшееся, по официальным данным, 175 дней. В результате наводнения было затоплено несколько индустриальных зон, где были расположены заводы по производству жестких дисков таких компаний, как Seagate, Western Digital и Toshiba. Как итог, цены на продукцию возросли на 60%, а объемы производства упали. Так магнитная лента получила вторую жизнь.

Магнитная лента IBM

Стоит отметить, что ленточные накопители, как правило, используются в тех сферах, где необходимо хранить очень большое количество информации. Например, в каких-либо крупных исследованиях. Так, магнитную ленту используют для записи результатов исследований на Большом адронном коллайдере. О преимуществах технологии в свое время рассказывал Альберто Пейс (Alberto Pace) - глава подразделения обработки и хранения данных CERN. Он отметил, что магнитная лента имеет четыре основных преимущества над жесткими дисками. Прежде всего, это скорость. Несмотря на то, что специализированному роботу требуется до 40 секунд, чтобы выбрать нужную кассету и вставить ее в считыватель, чтение данных из ленты происходит в четыре раза быстрее, чем с жесткого диска. Еще одним преимуществом магнитной ленты, по словам Пейса, является ее надежность. Если она рвётся, то ее можно легко склеить. В этом случае теряется лишь несколько сотен мегабайт данных. Когда выходит из строя жесткий диск, теряются абсолютно все данные. Глава подразделения CERN привел некоторые статистические данные, касающиеся надежности устройств. Так, в среднем за год в CERN из 100 петабайт данных, хранящихся на магнитных лентах, теряется лишь несколько сотен мегабайт. На жестких дисках располагается около 50 петабайт информации, и каждый год организация теряет до нескольких сотен терабайт в результате неисправностей HDD. Третьим преимуществом магнитной ленты является ее энергоэффективность, а точнее, экономичность. Сами ленты хранятся в неактивном состоянии, следовательно, они не потребляют энергию. Наконец, четвертое - это безопасность. Если злоумышленники получат доступ к жестким дискам, то они смогут уничтожить всю информацию за считанные минуты. В случае с магнитными лентами на это может уйти не один год.

Хранилище магнитных лент в CERN

Еще на два преимущества ленточных накопителей указал Эвангелос Элефтеро - руководитель отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе. Он отметил, что магнитные ленты все еще дешевле, чем жесткие диски. 1 Гбайт HDD стоит примерно 10 центов, тогда как стоимость аналогичной емкости магнитной ленты оценивается в 4 цента. Также Элефтеро обратил внимание на долговечность лент. Такой накопитель будет служить верой и правдой даже через 30 лет, в то время как рабочий цикл жесткого диска составляет всего 5 лет.

Тем не менее, стоит понимать, что магнитные ленты уже никогда не будут использоваться как единственная система хранения данных. Они занимают важное место в иерархической структуре хранения информации, но не являются (и не будут) ее основным звеном.

Дискеты

Следующей ступенью развития магнитных носителей информации стала дискета, которая была представлена в 1971 году. Над созданием девайса трудилась компания IBM. В 1967 году у «голубого гиганта» появилась необходимость рассылать клиентам обновления софта, и команда инженеров под руководством Алана Шугарта предложила идею компактного и быстрого гибкого диска. Спустя несколько лет в стенах IBM была создана 8-дюймовая дискета объемом 80 Кбайт с возможностью одноразовой записи. Решение получилось не очень удачным, поскольку притягивало много пыли и было чересчур хрупким для карманного девайса. Поэтому разработчики решили упаковать гибкий диск в защитный пластиковый кожух с тканевой прокладкой.

По своей конструкции дискета представляла собой диск из полимерных материалов, на который наносилось магнитное покрытие. Пластиковый кожух имел несколько отверстий. Центральное предназначалось для шпинделя дисковода, малое отверстие являлось индексным, то есть позволяло определить начало сектора. Наконец, через прямоугольное отверстие с закругленными углами магнитные головки дисковода работали непосредственно с диском.

Эта огромная 8-дюймовая дискета вмещала всего 80 Кбайт информации

Для чтения дискет компьютеры начали оснащаться дисководами, однако стоимость таких девайсов была сопоставима со стоимостью всей системы. Поэтому многие продолжали использовать кассеты. Прошло немало времени, пока дискеты не вытеснили магнитные ленты.

После создания первой дискеты работа над этим стандартом продолжилась. В 1973 году емкость 8-дюймовой дискеты увеличилась до 256 Кбайт, а еще спустя два года ее объем составлял целых 1000 Кбайт. Главным недостатком дискеты тогда был ее размер. В диаметре диск достигал приличных 203 мм, и это без учета корпуса дискеты. Такой девайс в лучшем случае можно было уместить в рюкзак или средних размеров сумку. А ведь дискета задумывалась как карманное устройство! Поэтому в 1976 году Шугарт предложил новый формат - 5,25 дюймов.

Почему именно такой размер? Бытует мнение, что однажды Алан Шугарт сидел в баре вместе с Ан Вэнгом из Wang Laboratories. Инженеры обсуждали новый формат дискеты, и в ходе разговора возникла идея создать девайс размером с салфетку. Новые решения получили название mini-floppy.

5,25-дюймовые дискеты тоже имели внушительный размер

По своей конструкции 5,25-дюймовые дискеты лишь немного отличались от 8-дюймовых собратьев. Отчасти изменилось положение отверстий на дискете, а футляр стал прочнее. Края приводного отверстия были защищены пластиковым или металлическим кольцом. Изначально объем таких дискет составлял 110 Кбайт, однако к 1984 году он был увеличен до 1,2 Мбайт. Именно с 5,25-дюймовых решений началось повсеместное распространение дискет. Этому способствовала более низкая в сравнении с 8-дюймовыми девайсами цена.

В 1981 году дискета обрела привычный для нас формат - 3,5 дюйма. Такой дизайн предложила компания Sony. Изначально объем дискеты составлял 720 Кбайт, но спустя пару лет он был увеличен вдвое. Чуть позже появились и более вместительные решения емкостью 2,88 Мбайт. Многие крупные компании поддержали уменьшенный стандарт. Например, компания Apple уже в 1984 году устанавливала приводы для 3,5-дюймовых дискет на компьютеры Macintosh.

Три поколения дискет: 8’’, 5,25’’ и 3,5’’ (слева направо)

В начале 90-х годов емкость дискет удовлетворяла далеко не всех пользователей. Одновременно разрабатывался целый ряд различных стандартов, которые должны были прийти на смену 3,5-дюймовым дискетам. Наиболее популярным из них стал Iomega Zip. По своей конструкции такая дискета во многом повторяла существующие. Носитель Iomega Zip представлял собой полимерный диск, покрытый ферромагнитным слоем. Корпус дискеты изготавливался из пластика и имел защитную шторку. Объем таких решений составлял 100 или 250 Мбайт, а через некоторое время выпускались даже 750-мегабайтные девайсы! Кроме этого, Iomega Zip обеспечивали более высокую скорость записи и чтения. Тем не менее стандарт так и не смог потеснить 3,5-дюймовые дискеты с вершины. Виной всему - высокая цена устройств. Да и, скажем прямо, надежностью дискеты Zip вовсе не отличались.

Оптические накопители. CD

Параллельно с дискетами развивался и рынок оптических накопителей. Первой ласточкой в этой области стал девайс под названием Laserdisc (LD), разработанный в 1969 году компанией Philips. Носитель предназначался для домашнего просмотра кинофильмов. Он поддерживал аналоговую запись изображения и звука. Чуть позже звук стал цифровым. Laserdisc имел ряд преимуществ над кассетными стандартами VHS и Betamax, однако так и не смог заменить их. В основном формат был популярен в США и Японии. В Европе к нему отнеслись довольно прохладно. Кстати, первым фильмом, вышедшим на LD, стали «Челюсти». Это произошло в 1978 году в США. Последние фильмы на лазердисках были выпущены компанией Paramount в 2000 году. Несмотря на провал стандарта, используемые в нем технологии оказали влияние на развитие форматов следующего поколения.

Своими размерами Laserdisc напоминал виниловую пластинку

На смену Laserdisc пришел намного более успешный формат Compact Disc (CD). Стандарт CD разрабатывался совместными усилиями таких компаний, как Sony и Philips, и был выпущен в 1982 году. Изначально CD предполагалось использовать только для хранения аудиозаписей в цифровом виде, однако со временем на компакт-дисках начали хранить и распространять файлы любых типов. Этому способствовало и то, что, начиная с 1987 года, Microsoft и Apple начали использовать CD-приводы в своих персональных компьютерах.

Как же устроен компакт-диск? Он представляет собой поликарбонатную подложку, покрытую тонким слоем металла. Этот слой защищен лаком, на который, как правило, наносятся какие-либо картинки, логотипы и другие штуки. Информация на диск записывается в виде спиральной дорожки из углублений, или питов (от англ. pit - углубление), выдавленных в поликарбонатной основе. Как правило, размер пита в ширину составляет около 500 нм, в глубину - 100 нм, а его длина варьируется от 850 до 3500 нм. Расстояние между питами называется лендом. Ленд обычно равняется 1,6 мкм. Питы рассеивают или поглощают падающий на них свет, а подложка отражает его. Считывание информации с компакт-диска происходит с помощью лазерного луча, образующего световое пятно диаметром примерно 1,2 мкм. Если лазер попадает на ленд, то приемный фотодиод фиксирует максимальный сигнал. Это логическая единица. Если же свет попадает на пит, то фотодиод фиксирует свет меньшей интенсивности. И это уже будет логическим нулем.

Первые компакт-диски предназначались исключительно для чтения. В процессе производства на поликарбонатную подложку сразу наносились питы, а затем поверхность покрывали отражающим слоем и защитным лаком.

Мы живем в век цифровых технологий, а вокруг нас вращаются колоссальные объемы информации. Терабайтные жесткие диски, флэш-накопители емкостью в несколько гигабайт, вместительные DVD-болванки по мизерной цене - это день сегодняшний. Современные носители данных отличаются высокой скоростью работы и удобством в использовании. Однако за всем этим стоит длительный эволюционный процесс, который стартовал сразу после появления первых компьютеров, а продолжается и по сей день.

Эпоха картона

Как известно, первые компьютеры были огромны и некрасивы и, по сути, представляли собой нагромождение шкафов, заполненных различными проводами и лампами. Носители информации в те времена не знали понятий «удобство» и «высокая плотность записи». Данные загружались при помощи перфокарт - картонных карточек с проделанными в них отверстиями. Информация записывалась и считывалась согласно определенным схемам, но в основе лежал двоичный код: наличие дырки - 1, отсутствие - 0.

Существовало приличное число форматов, но наибольшее распространение получили перфокарты «формата IBM », введенного в 1928 году. Его ключевые особенности: размеры карты составляли 187х83 мм, на ней располагалось 12 строк и 80 столбцов. Данные можно было записывать как в двоичном, так и в текстовом виде. Если перевести емкость перфокарты в классические единицы измерения, мы получим значение 120 байт.

Для ввода информации в компьютер перфокарты собирали в стопки строго определенной последовательности и подавали на вход считывающего устройства. Карты можно было менять местами, при необходимости удалять или заменять другими. Нарушение последовательности карт в колоде оборачивалось фатальными последствиями: восстановить информацию, если перфокарты не были пронумерованы, было практически невозможно.

В качестве альтернативы перфокартам выступали перфоленты. Смысл оставался почти тот же: информация в двоичном виде записывалась на бумажную ленту, на которой располагались несколько рядов для отверстий. У перфолент было два существенных недостатка: невозможность редактирования записанных данных и хрупкость бумажной ленты. В то же время данный носитель информации, будучи свернутым в аккуратный рулон, облегчал хранение данных и исключал ту путаницу, которая нередко происходила при сборке колоды перфокарт.

Триумф магнитных полей

На смену перфокартам пришли устройства магнитного хранения данных, основанные на явлении, именуемом электромагнетизмом. Суть его заключается в следующем: при пропускании электрического тока через проводник внутри последнего образуется магнитное поле. Обратное утверждение также верно: в проводнике, на который воздействует переменное магнитное поле, возникает электрический ток. Первое правило используется для записи данных, второе - для считывания.

В любом магнитном носителе информации есть поверхность, покрытая слоем ферромагнетика, и головка чтения/записи, состоящая из U-образного сердечника с обмоткой. Когда по обмотке протекает ток, в сердечнике появляется магнитное поле, полярность которого зависит от направления тока. Магнитное поле распространяется в окружающее пространство, и если вблизи есть другой ферромагнетик (рабочая поверхность носителя), то магнитные частицы в нем поляризуются в направлении действия поля, создавая остаточную намагниченность. Для изменения полярности этих частиц достаточно изменить направление протекания тока в обмотке. Воздействуя магнитными полями разной полярности на отдельные участки поверхности носителя (домены), можно записать информацию. При считывании данных головка регистрирует зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Таким образом, одному биту информации соответствует область на носителе, где размещена подобная зона.

Первыми накопителями этого типа были магнитные барабаны - большие металлические цилиндры, покрытые ферромагнетиком, вокруг которых располагался ряд считывающих головок, каждая на своей дорожке. Скорость работы устройства зависела от скорости вращения барабана. Сами головки не могли перемещаться произвольно, и контроллеру большую часть времени приходилось ждать, когда необходимые данные появятся под нужной головкой при повороте барабана. Сами понимаете, что время доступа у носителя было не на высоте.

Следующим на арену вышел жесткий диск. Случилось это в 1956 году, когда IBM начала продажи первой дисковой системы хранения данных - 305 RAMAC . Чудо инженерной мысли состояло из 50 дисков диаметром 60 см и весило около тонны. Объем жесткого диска по тем временам был просто феноменальным - целых 5 МБ! Главное преимущество новинки заключалось в высоком скорости работы: в системе RAMAC головка чтения/записи свободно «гуляла» по поверхности диска, так что данные записывались и извлекались заметно быстрее, чем в случае с магнитными барабанами.

Вконце шестидесятых годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Объема в 60 МБ на тот момент было более чем достаточно, и производители накопителей стали работать над уменьшением габаритов моделей. К началу восьмидесятых винчестеры похудели до размеров сегодняшних 5,25-дюймовых приводов, а их цена упала до 2000 долларов за накопитель емкостью 10 МБ. К 1991 году максимальная емкость увеличилась до 100 МБ, к 1997 году - уже до 10 ГБ. В конце 2005 года был освоен метод перпендикулярной записи, который существенно увеличил плотность записи. Кроме того, скорость передачи данных за последние двадцать лет возросла почти в сто раз, а среднее время поиска уменьшилось в тридцать раз.

Впрочем, вернемся в прошлое. К магнитным носителям информации относится и такое известное устройство, как дискета или флоппи-диск. В отличие от жестких дисков, у этих накопителей слой ферромагнетика наносится на основу из лавсана - легкого, гибкого и дешевого материала.

Кажется невероятным, чтоДискета представляла собой гибкий диск, имевший ферромагнитное покрытие и спрятанный в пластиковый корпус, предназначенный для защиты от механических повреждений. В 1967 году в лаборатории компании IBM была создана первая дискета, имевшая диаметр 8 дюймов, а в 1971 году первая такая дискета объемом в 80 килобайт была представлена широкой аудитории. Курс развития гибких магнитных дисков был направлен на уменьшение физических размеров и увеличение объема памяти, в результате чего сначала дискеты уменьшились до 5¼ дюймов, а после – до 3½, а объем памяти к 1991 году достиг 2880 килобайт, хотя самым ходовым форматом оставалась 3½-дюймовая 1,44-мегабайтная дискета. К сожалению, дискеты нельзя было назвать надежным приспособлением для хранения информации в силу особенностей их устройства. Они легко размагничивались под воздействием магнитных полей различной природы, застревали в дисководе, были подвержены механическим повреждениям. В итоге, когда стали появляться более надежные носители информации, дискеты стали исчезать из обихода и в настоящий момент практически перестали использоваться.

Главное достоинство дискет - доступность. Первый флоппи-диск диаметром 8 дюймов (20,3 см) создали в конце шестидесятых годов в лабораториях компании IBM. К 1975 году его объем возрос с 80 КБ до 1 МБ, однако массовое признание изделие так и не получило. Золотое время для гибких дисков настало позже, когда группа инженеров, работавших над прототипом первой дискеты, покинула IBM и основала собственную компанию Shugart Associates . Именно она в 1976 году разработала гибкие диски формата 5,25 дюйма (13,34 см). Изначально их вместимость составляла 110 КБ, но к 1984 году возросла до 1,2 МБ. Низкая стоимость носителей и доступность соответствующих приводов сыграли свою роль: дискеты стали использовать повсеместно. В 1984 году началась экспансия гибких дисков формата 3,5 дюйма (8,9 см), разработанных компанией Sony . Изначальный объем составлял 720 КБ, через пару лет он возрос до 1440 КБ, а еще через четыре года - до 2880 КБ. Формат просуществовал достаточно долго, а приводы для 3,5-дюймовых дискет все еще можно встретить на современных компьютерах.

История развития носителей информации

Память человека ненадёжна, поэтому достаточно давно человечество придумало записывать свои мысли.

Носитель информации - это любое устройство предназначенное для записи и хранения информации.

Примерами носителей могут быть и бумага, или USB-Flash память, также как и глиняная табличка или человеческая ДНК.

Информация тоже бывает разная - это и текст и звук и видео. История носителей информации начинается довольно давно...

Камни и стены пещер - палеолит (до 40 до 10 тыс. лет до нашей эры)

Первыми носителями информации были, по всей видимости, стены пещер. Наскальные изображения и петроглифы (от греч. petros - камень и glyphe - резьба) изображали животных, охоту и бытовые сцены. На самом деле точно неизвестно, предназначались ли наскальные рисунки для передачи информации, служили простым украшением, совмещали эти функции или вообще нужны были для чего то ещё. Тем не менее это самые старые носители информации, известные сейчас.

Глиняные таблички - 7-й век до нашей эры

На глиняных табличках писали пока глина была сырой, а затем обжигали в печи.

Именно глиняные таблички составили основы первых в истории библиотек, наиболее известной из которых является библиотека Ашшурбанипала в Ниневии (7 век), которая насчитывала около 30 тысяч клинописных табличек.

Восковые таблички

Восковые таблички - это деревянные таблички, внутренняя сторона которых покрывалась цветным воском для нанесения надписей острым предметом (стилосом). Использовались в древнем Риме.


Папирус - 3000 лет до нашей эры

Папирус - писчий материал получивший распространение в Египте и во всем Средиземноморье, для изготовления которого использовалось растение семейства осоковых.


Писали на нем при помощи специального пера.

Пергамент - 2 век до нашей веры

Пергамент постепенно вытеснял папирус. Название материала происходит от города Пергам, где стали впервые изготавливать этот материал. Пергамент представляет собой недубленую выделанную кожу животных - овечью, телячью или козью.

Популярности пергамента способствовало то, что на нём (в отличие от папируса) есть возможность смыть текст, написанный растворимыми в воде чернилами (см. палимпсест) и нанести новый. Кроме того, на пергаменте можно писать с обоих сторон листа

Бумага - 1-й или начало 2 века нашей эры

Предполагается что бумага была изобретена в Китае в конце первого или начале второго века нашей эры.

Широкое распространение получила благодаря арабам только в 8-9 веках.

Береста - широкое распространение с 12 века

Берестяные грамоты использовались в Новогороде и были открыты учеными в 1951 году.

Тексты берестяных писем выдавливались с помощью специального инструмента - стилоса, изготовленного из железа, бронзы или кости.

Перфокарты - появились в 1804 году, запатентованы в 1884 году


Появление перфокарт в основном связывается с именем Германа Холлерита, который применил их для проведения переписи населения в США в 1890 году. Тем не менее первые перфокарты были созданы и использованы существенно раньше. Жозеф Мари Жаккард использовал их для того чтобы задавать рисунок ткани для своего ткацкого станка ещё в 1804 году.


Перфоленты - 1846 год

Перфолента впервые появилась в 1846 году и использовалась для того, чтобы посылать телеграммы



Магнитная лента - 50-е годы

В 1952 году магнитная лента была использована для хранения, записи и считывания информации в компьютере IBM System 701.



Далее магнитная лента получила огромное признание и распространённость в форме компакт-кассет.


Магнитные диски - 50-е годы

Магнитный диск был изобретен в компании IBM в начале 50-х годов.

Гибкий диск - 1969 год

Первый, так называемый, гибкий диск был впервые представлен в 1969 году.


Жесткий диск - настоящее время

Вот мы и добрались до современности

.

Жесткий диск изобретен в 1956 году, но продолжает использоваться и постоянно совершенствоваться.
Compact Disk, DVD - настоящее время





На самом деле CD И DVD это очень близкие технологии, отличающиеся не столько типом носителя, сколько технологией записи
Flash - настоящее время


Естественно здесь перечислены далеко не все придуманные и использованные человечеством носители информации. Часть видов носителей опущена специально (CD-R, Blue Ray, магнитные барабаны, лампы), а часть конечно просто забыта. Во всех ошибках или неправильных описаниях, виноват конечно же я,был бы благодарен за любые дополнения и уточнения.

Флешка - удивительная малышка, хранящая в себе весь мир.

Что такое флешка? Это высокая емкость, компактные габариты, большая скорость чтения информации и записи, защита от механических и электромагнитных воздействий и высокая конкуренция всем прочим носителям инфы. Это всем известно. Давайте познакомимся с теми фактами о флешках, о которые мало кто знает.

1. Первые флешки были созданы в начале семидесятых годов.

2. Температура для хранения современных флеш карт памяти от -30 до +80 градусов.

3. Креатив выпускаемых флешек потрясает умы и эстетические чувства граждан. Самую дорогую в мире USB-флешку сделала швейцарская ювелирная компания La Maison Shawish. Она обладает совместимостью с любой операционной системой и вмещает 32 Гб памяти. Выполнена флешка в виде гриба. Существует несколько вариантов ее оформления драгоценными камнями: изумрудами, рубинами, бриллиантами и сапфирами в сочетании с розовым или желтым золотом, что, конечно же, влияет на её стоимость. Создатель компании Мохамед Шавиш (Mohamed Shawish), он же автор украшения флешки, просит за свой изыск около $37 000!


4. Если правильно использовать температурные условия хранения, то флешка может служить своему хозяину в течение 10 лет.

5. Емкость флешки уменьшается в зависимости от количества перезаписи различной информации.

6. Появились одноразовые флешки. Флешку, как и мобильник, всегда надо носить с собой. Но она очень маленькая и часто теряется, поэтому лучшие умы человечества придумали устройство GIGS.2.GO размером с пластиковую карточку объемом 1 Гб с корпусом из переработанного картона. К корпусу прикреплены четыре одноразовые флешки. Цена его невысока. В будущем такие флешки заменят информационные материалы, которые часто раздают на улице и таким образом сэкономят тонны бумаги.


7. Для производителя гибкий диск емкостью 1 Гб обходится в $1, а флеш память такой же емкостью - $0.7.

8. Флешка, которую хранят в холодильнике, отличается более длительным сроком хранения информации.

9. Появилась первая в мире флешка емкостью 1 терабайт. Она была представлена компанией Kingston на выставке CES 2013 Скорость чтения такой флешки 240 МБ/с, а при записи 160 Мб/с. Размеры этого брусочка - 7,2 х 2,7 х 2,1 см.Такая флешка будет выпускаться в двух объемах – 1Тб и 512 Гб. Сколько будет стоить первая, пока неизвестно, а вот стоимость второй уже объявлена - $1750.

10. Оригинальная флеш-карта рассчитана на 10 тысяч перезаписей, а подделка выдерживают около тысячи полных перезаписей.

Сижу, флешки форматирую, а рядом мама цветы поливает. И что-то колпачок найти не могу, тогда вслух говорю: - Если бы я был колпачком от флешки, то где бы я был? На что мама мне ответила: - В психушке! – шутит на одном из форумов пользователь Next.

Друзья! Не теряйте флешки – ведь в них вся наша жизнь!.